Metamath Proof Explorer


Theorem eqlei2

Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018)

Ref Expression
Hypothesis lt.1 A
Assertion eqlei2 B=ABA

Proof

Step Hyp Ref Expression
1 lt.1 A
2 eleq1a AB=AB
3 1 2 ax-mp B=AB
4 eqcom B=AA=B
5 letri3 ABA=BABBA
6 1 5 mpan BA=BABBA
7 4 6 bitrid BB=AABBA
8 simpr ABBABA
9 7 8 syl6bi BB=ABA
10 3 9 mpcom B=ABA