Metamath Proof Explorer


Theorem eqoprab2bw

Description: Equivalence of ordered pair abstraction subclass and biconditional. Version of eqoprab2b with a disjoint variable condition, which does not require ax-13 . (Contributed by Mario Carneiro, 4-Jan-2017) Avoid ax-13 . (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion eqoprab2bw xyz|φ=xyz|ψxyzφψ

Proof

Step Hyp Ref Expression
1 nfoprab1 _xxyz|φ
2 nfoprab1 _xxyz|ψ
3 1 2 nfss xxyz|φxyz|ψ
4 nfoprab2 _yxyz|φ
5 nfoprab2 _yxyz|ψ
6 4 5 nfss yxyz|φxyz|ψ
7 nfoprab3 _zxyz|φ
8 nfoprab3 _zxyz|ψ
9 7 8 nfss zxyz|φxyz|ψ
10 ssel xyz|φxyz|ψxyzxyz|φxyzxyz|ψ
11 oprabidw xyzxyz|φφ
12 oprabidw xyzxyz|ψψ
13 10 11 12 3imtr3g xyz|φxyz|ψφψ
14 9 13 alrimi xyz|φxyz|ψzφψ
15 6 14 alrimi xyz|φxyz|ψyzφψ
16 3 15 alrimi xyz|φxyz|ψxyzφψ
17 ssoprab2 xyzφψxyz|φxyz|ψ
18 16 17 impbii xyz|φxyz|ψxyzφψ
19 2 1 nfss xxyz|ψxyz|φ
20 5 4 nfss yxyz|ψxyz|φ
21 8 7 nfss zxyz|ψxyz|φ
22 ssel xyz|ψxyz|φxyzxyz|ψxyzxyz|φ
23 22 12 11 3imtr3g xyz|ψxyz|φψφ
24 21 23 alrimi xyz|ψxyz|φzψφ
25 20 24 alrimi xyz|ψxyz|φyzψφ
26 19 25 alrimi xyz|ψxyz|φxyzψφ
27 ssoprab2 xyzψφxyz|ψxyz|φ
28 26 27 impbii xyz|ψxyz|φxyzψφ
29 18 28 anbi12i xyz|φxyz|ψxyz|ψxyz|φxyzφψxyzψφ
30 eqss xyz|φ=xyz|ψxyz|φxyz|ψxyz|ψxyz|φ
31 2albiim yzφψyzφψyzψφ
32 31 albii xyzφψxyzφψyzψφ
33 19.26 xyzφψyzψφxyzφψxyzψφ
34 32 33 bitri xyzφψxyzφψxyzψφ
35 29 30 34 3bitr4i xyz|φ=xyz|ψxyzφψ