Metamath Proof Explorer


Theorem eqrelrdv2

Description: A version of eqrelrdv . (Contributed by Rodolfo Medina, 10-Oct-2010)

Ref Expression
Hypothesis eqrelrdv2.1 φxyAxyB
Assertion eqrelrdv2 RelARelBφA=B

Proof

Step Hyp Ref Expression
1 eqrelrdv2.1 φxyAxyB
2 1 alrimivv φxyxyAxyB
3 eqrel RelARelBA=BxyxyAxyB
4 2 3 imbitrrid RelARelBφA=B
5 4 imp RelARelBφA=B