Metamath Proof Explorer


Theorem equs5eALT

Description: Alternate proof of equs5e . Uses ax-12 but not ax-13 . (Contributed by NM, 2-Feb-2007) (Proof shortened by Wolf Lammen, 15-Jan-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion equs5eALT xx=yφxx=yyφ

Proof

Step Hyp Ref Expression
1 nfa1 xxx=yyφ
2 hbe1 yφyyφ
3 2 19.23bi φyyφ
4 ax-12 x=yyyφxx=yyφ
5 3 4 syl5 x=yφxx=yyφ
6 5 imp x=yφxx=yyφ
7 1 6 exlimi xx=yφxx=yyφ