Metamath Proof Explorer


Theorem equvel

Description: A variable elimination law for equality with no distinct variable requirements. Compare equvini . Usage of this theorem is discouraged because it depends on ax-13 . Use equvelv when possible. (Contributed by NM, 1-Mar-2013) (Proof shortened by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 15-Jun-2019) (New usage is discouraged.)

Ref Expression
Assertion equvel zz=xz=yx=y

Proof

Step Hyp Ref Expression
1 albi zz=xz=yzz=xzz=y
2 ax6e zz=y
3 biimpr z=xz=yz=yz=x
4 ax7 z=xz=yx=y
5 3 4 syli z=xz=yz=yx=y
6 5 com12 z=yz=xz=yx=y
7 2 6 eximii zz=xz=yx=y
8 7 19.35i zz=xz=yzx=y
9 4 spsd z=xzz=yx=y
10 9 sps zz=xzz=yx=y
11 10 a1dd zz=xzz=yzx=yx=y
12 nfeqf ¬zz=x¬zz=yzx=y
13 12 19.9d ¬zz=x¬zz=yzx=yx=y
14 13 ex ¬zz=x¬zz=yzx=yx=y
15 11 14 bija zz=xzz=yzx=yx=y
16 1 8 15 sylc zz=xz=yx=y