Metamath Proof Explorer


Theorem eqvrelcl

Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 2-Jun-2019)

Ref Expression
Hypotheses eqvrelcl.1 φEqvRelR
eqvrelcl.2 φARB
Assertion eqvrelcl φAdomR

Proof

Step Hyp Ref Expression
1 eqvrelcl.1 φEqvRelR
2 eqvrelcl.2 φARB
3 eqvrelrel EqvRelRRelR
4 1 3 syl φRelR
5 releldm RelRARBAdomR
6 4 2 5 syl2anc φAdomR