Metamath Proof Explorer


Theorem eqvreleq

Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eqvreleq R = S EqvRel R EqvRel S

Proof

Step Hyp Ref Expression
1 refreleq R = S RefRel R RefRel S
2 symreleq R = S SymRel R SymRel S
3 trreleq R = S TrRel R TrRel S
4 1 2 3 3anbi123d R = S RefRel R SymRel R TrRel R RefRel S SymRel S TrRel S
5 df-eqvrel EqvRel R RefRel R SymRel R TrRel R
6 df-eqvrel EqvRel S RefRel S SymRel S TrRel S
7 4 5 6 3bitr4g R = S EqvRel R EqvRel S