Metamath Proof Explorer


Theorem eqvreleq

Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eqvreleq R=SEqvRelREqvRelS

Proof

Step Hyp Ref Expression
1 refreleq R=SRefRelRRefRelS
2 symreleq R=SSymRelRSymRelS
3 trreleq R=STrRelRTrRelS
4 1 2 3 3anbi123d R=SRefRelRSymRelRTrRelRRefRelSSymRelSTrRelS
5 df-eqvrel EqvRelRRefRelRSymRelRTrRelR
6 df-eqvrel EqvRelSRefRelSSymRelSTrRelS
7 4 5 6 3bitr4g R=SEqvRelREqvRelS