Metamath Proof Explorer


Theorem eqvrelrel

Description: An equivalence relation is a relation. (Contributed by Peter Mazsa, 2-Jun-2019)

Ref Expression
Assertion eqvrelrel EqvRelRRelR

Proof

Step Hyp Ref Expression
1 dfeqvrel2 EqvRelRIdomRRR-1RRRRRelR
2 1 simprbi EqvRelRRelR