Metamath Proof Explorer
		
		
		
		Description:  A transitivity relation for equivalences.  (Contributed by Mario
       Carneiro, 9-Jul-2014)  (Revised by Peter Mazsa, 2-Jun-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | eqvreltr4d.1 |  | 
					
						|  |  | eqvreltr4d.2 |  | 
					
						|  |  | eqvreltr4d.3 |  | 
				
					|  | Assertion | eqvreltr4d |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqvreltr4d.1 |  | 
						
							| 2 |  | eqvreltr4d.2 |  | 
						
							| 3 |  | eqvreltr4d.3 |  | 
						
							| 4 | 1 3 | eqvrelsym |  | 
						
							| 5 | 1 2 4 | eqvreltrd |  |