Metamath Proof Explorer


Theorem eringring

Description: An endomorphism ring is a ring. TODO: fix comment. (Contributed by NM, 4-Aug-2013)

Ref Expression
Hypotheses ernggrp.h H=LHypK
ernggrp.d D=EDRingKW
Assertion eringring KHLWHDRing

Proof

Step Hyp Ref Expression
1 ernggrp.h H=LHypK
2 ernggrp.d D=EDRingKW
3 eqid BaseK=BaseK
4 eqid LTrnKW=LTrnKW
5 eqid TEndoKW=TEndoKW
6 eqid aTEndoKW,bTEndoKWfLTrnKWafbf=aTEndoKW,bTEndoKWfLTrnKWafbf
7 eqid fLTrnKWIBaseK=fLTrnKWIBaseK
8 eqid aTEndoKWfLTrnKWaf-1=aTEndoKWfLTrnKWaf-1
9 eqid aTEndoKW,bTEndoKWab=aTEndoKW,bTEndoKWab
10 1 2 3 4 5 6 7 8 9 erngdvlem3 KHLWHDRing