Metamath Proof Explorer


Theorem erngplus2-rN

Description: Ring addition operation. (Contributed by NM, 10-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses erngset.h-r H=LHypK
erngset.t-r T=LTrnKW
erngset.e-r E=TEndoKW
erngset.d-r D=EDRingRKW
erng.p-r +˙=+D
Assertion erngplus2-rN KHLWHUEVEFTU+˙VF=UFVF

Proof

Step Hyp Ref Expression
1 erngset.h-r H=LHypK
2 erngset.t-r T=LTrnKW
3 erngset.e-r E=TEndoKW
4 erngset.d-r D=EDRingRKW
5 erng.p-r +˙=+D
6 1 2 3 4 5 erngplus-rN KHLWHUEVEU+˙V=fTUfVf
7 6 3adantr3 KHLWHUEVEFTU+˙V=fTUfVf
8 fveq2 f=FUf=UF
9 fveq2 f=FVf=VF
10 8 9 coeq12d f=FUfVf=UFVF
11 10 adantl KHLWHUEVEFTf=FUfVf=UFVF
12 simpr3 KHLWHUEVEFTFT
13 fvex UFV
14 fvex VFV
15 13 14 coex UFVFV
16 15 a1i KHLWHUEVEFTUFVFV
17 7 11 12 16 fvmptd KHLWHUEVEFTU+˙VF=UFVF