Metamath Proof Explorer


Theorem estrcbas

Description: Set of objects of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C=ExtStrCatU
estrcbas.u φUV
Assertion estrcbas φU=BaseC

Proof

Step Hyp Ref Expression
1 estrcbas.c C=ExtStrCatU
2 estrcbas.u φUV
3 catstr BasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgfStruct115
4 baseid Base=SlotBasendx
5 snsstp1 BasendxUBasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
6 3 4 5 strfv UVU=BaseBasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
7 2 6 syl φU=BaseBasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
8 eqidd φxU,yUBaseyBasex=xU,yUBaseyBasex
9 eqidd φvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
10 1 2 8 9 estrcval φC=BasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
11 10 fveq2d φBaseC=BaseBasendxUHomndxxU,yUBaseyBasexcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
12 7 11 eqtr4d φU=BaseC