Metamath Proof Explorer


Theorem estrccofval

Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C=ExtStrCatU
estrcbas.u φUV
estrcco.o ·˙=compC
Assertion estrccofval φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf

Proof

Step Hyp Ref Expression
1 estrcbas.c C=ExtStrCatU
2 estrcbas.u φUV
3 estrcco.o ·˙=compC
4 eqid HomC=HomC
5 1 2 4 estrchomfval φHomC=xU,yUBaseyBasex
6 eqidd φvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
7 1 2 5 6 estrcval φC=BasendxUHomndxHomCcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
8 catstr BasendxUHomndxHomCcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgfStruct115
9 ccoid comp=Slotcompndx
10 snsstp3 compndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgfBasendxUHomndxHomCcompndxvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
11 2 2 xpexd φU×UV
12 mpoexga U×UVUVvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgfV
13 11 2 12 syl2anc φvU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgfV
14 7 8 9 10 13 3 strfv3 φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf