Metamath Proof Explorer


Theorem estrccofval

Description: Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020)

Ref Expression
Hypotheses estrcbas.c C = ExtStrCat U
estrcbas.u φ U V
estrcco.o · ˙ = comp C
Assertion estrccofval φ · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f

Proof

Step Hyp Ref Expression
1 estrcbas.c C = ExtStrCat U
2 estrcbas.u φ U V
3 estrcco.o · ˙ = comp C
4 eqid Hom C = Hom C
5 1 2 4 estrchomfval φ Hom C = x U , y U Base y Base x
6 eqidd φ v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
7 1 2 5 6 estrcval φ C = Base ndx U Hom ndx Hom C comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
8 catstr Base ndx U Hom ndx Hom C comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f Struct 1 15
9 ccoid comp = Slot comp ndx
10 snsstp3 comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f Base ndx U Hom ndx Hom C comp ndx v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
11 2 2 xpexd φ U × U V
12 mpoexga U × U V U V v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f V
13 11 2 12 syl2anc φ v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f V
14 7 8 9 10 13 3 strfv3 φ · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f