Metamath Proof Explorer
		
		
		
		Description:  Equality theorem for an extended sum.  (Contributed by Thierry Arnoux, 19-Oct-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | esumeq1d.0 |  | 
					
						|  |  | esumeq1d.1 |  | 
				
					|  | Assertion | esumeq1d |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | esumeq1d.0 |  | 
						
							| 2 |  | esumeq1d.1 |  | 
						
							| 3 |  | eqidd |  | 
						
							| 4 | 1 2 3 | esumeq12dvaf |  |