Metamath Proof Explorer


Theorem esumeq2d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 21-Sep-2016)

Ref Expression
Hypotheses esumeq2d.0 kφ
esumeq2d.1 φkAB=C
Assertion esumeq2d φ*kAB=*kAC

Proof

Step Hyp Ref Expression
1 esumeq2d.0 kφ
2 esumeq2d.1 φkAB=C
3 eqidd φA=A
4 2 r19.21bi φkAB=C
5 1 3 4 esumeq12dvaf φ*kAB=*kAC