Metamath Proof Explorer


Theorem etransclem5

Description: A change of bound variable, often used in proofs for etransc . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion etransclem5 j 0 M x X x j if j = 0 P 1 P = k 0 M y X y k if k = 0 P 1 P

Proof

Step Hyp Ref Expression
1 oveq1 x = y x j = y j
2 1 oveq1d x = y x j if j = 0 P 1 P = y j if j = 0 P 1 P
3 2 cbvmptv x X x j if j = 0 P 1 P = y X y j if j = 0 P 1 P
4 oveq2 j = k y j = y k
5 eqeq1 j = k j = 0 k = 0
6 5 ifbid j = k if j = 0 P 1 P = if k = 0 P 1 P
7 4 6 oveq12d j = k y j if j = 0 P 1 P = y k if k = 0 P 1 P
8 7 mpteq2dv j = k y X y j if j = 0 P 1 P = y X y k if k = 0 P 1 P
9 3 8 eqtrid j = k x X x j if j = 0 P 1 P = y X y k if k = 0 P 1 P
10 9 cbvmptv j 0 M x X x j if j = 0 P 1 P = k 0 M y X y k if k = 0 P 1 P