Metamath Proof Explorer


Theorem eulercrct

Description: A pseudograph with an Eulerian circuit <. F , P >. (an "Eulerian pseudograph") has only vertices of even degree. (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypothesis eulerpathpr.v V=VtxG
Assertion eulercrct GUPGraphFEulerPathsGPFCircuitsGPxV2VtxDegGx

Proof

Step Hyp Ref Expression
1 eulerpathpr.v V=VtxG
2 eqid iEdgG=iEdgG
3 simpl GUPGraphFEulerPathsGPGUPGraph
4 upgruhgr GUPGraphGUHGraph
5 2 uhgrfun GUHGraphFuniEdgG
6 4 5 syl GUPGraphFuniEdgG
7 6 adantr GUPGraphFEulerPathsGPFuniEdgG
8 simpr GUPGraphFEulerPathsGPFEulerPathsGP
9 1 2 3 7 8 eupth2 GUPGraphFEulerPathsGPxV|¬2VtxDegGx=ifP0=PFP0PF
10 9 3adant3 GUPGraphFEulerPathsGPFCircuitsGPxV|¬2VtxDegGx=ifP0=PFP0PF
11 crctprop FCircuitsGPFTrailsGPP0=PF
12 11 simprd FCircuitsGPP0=PF
13 12 3ad2ant3 GUPGraphFEulerPathsGPFCircuitsGPP0=PF
14 13 iftrued GUPGraphFEulerPathsGPFCircuitsGPifP0=PFP0PF=
15 14 eqeq2d GUPGraphFEulerPathsGPFCircuitsGPxV|¬2VtxDegGx=ifP0=PFP0PFxV|¬2VtxDegGx=
16 rabeq0 xV|¬2VtxDegGx=xV¬¬2VtxDegGx
17 notnotr ¬¬2VtxDegGx2VtxDegGx
18 17 ralimi xV¬¬2VtxDegGxxV2VtxDegGx
19 16 18 sylbi xV|¬2VtxDegGx=xV2VtxDegGx
20 15 19 syl6bi GUPGraphFEulerPathsGPFCircuitsGPxV|¬2VtxDegGx=ifP0=PFP0PFxV2VtxDegGx
21 10 20 mpd GUPGraphFEulerPathsGPFCircuitsGPxV2VtxDegGx