Metamath Proof Explorer


Theorem eupth2lem3lem1

Description: Lemma for eupth2lem3 . (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
trlsegvdeg.vx φVtxX=V
trlsegvdeg.vy φVtxY=V
trlsegvdeg.vz φVtxZ=V
trlsegvdeg.ix φiEdgX=IF0..^N
trlsegvdeg.iy φiEdgY=FNIFN
trlsegvdeg.iz φiEdgZ=IF0N
Assertion eupth2lem3lem1 φVtxDegXU0

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trlsegvdeg.vx φVtxX=V
8 trlsegvdeg.vy φVtxY=V
9 trlsegvdeg.vz φVtxZ=V
10 trlsegvdeg.ix φiEdgX=IF0..^N
11 trlsegvdeg.iy φiEdgY=FNIFN
12 trlsegvdeg.iz φiEdgZ=IF0N
13 5 7 eleqtrrd φUVtxX
14 13 elfvexd φXV
15 1 2 3 4 5 6 7 8 9 10 11 12 trlsegvdeglem6 φdomiEdgXFin
16 eqid VtxX=VtxX
17 eqid iEdgX=iEdgX
18 eqid domiEdgX=domiEdgX
19 16 17 18 vtxdgfisf XVdomiEdgXFinVtxDegX:VtxX0
20 14 15 19 syl2anc φVtxDegX:VtxX0
21 20 13 ffvelcdmd φVtxDegXU0