Metamath Proof Explorer


Theorem evenprm2

Description: A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020)

Ref Expression
Assertion evenprm2 PPEvenP=2

Proof

Step Hyp Ref Expression
1 2a1 P=2PPEvenP=2
2 df-ne P2¬P=2
3 2 biimpri ¬P=2P2
4 3 anim2i P¬P=2PP2
5 4 ancoms ¬P=2PPP2
6 eldifsn P2PP2
7 5 6 sylibr ¬P=2PP2
8 oddprmALTV P2POdd
9 oddneven POdd¬PEven
10 9 pm2.21d POddPEvenP=2
11 7 8 10 3syl ¬P=2PPEvenP=2
12 11 ex ¬P=2PPEvenP=2
13 1 12 pm2.61i PPEvenP=2
14 2evenALTV 2Even
15 eleq1 P=2PEven2Even
16 14 15 mpbiri P=2PEven
17 13 16 impbid1 PPEvenP=2