Metamath Proof Explorer


Theorem oddprmALTV

Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015) (Revised by AV, 21-Jun-2020)

Ref Expression
Assertion oddprmALTV N2NOdd

Proof

Step Hyp Ref Expression
1 eldifsn N2NN2
2 prmz NN
3 2 adantr NN2N
4 necom N22N
5 df-ne 2N¬2=N
6 4 5 sylbb N2¬2=N
7 6 adantl NN2¬2=N
8 1ne2 12
9 8 nesymi ¬2=1
10 9 a1i NN2¬2=1
11 ioran ¬2=N2=1¬2=N¬2=1
12 7 10 11 sylanbrc NN2¬2=N2=1
13 2nn 2
14 13 a1i N22
15 dvdsprime N22N2=N2=1
16 14 15 sylan2 NN22N2=N2=1
17 12 16 mtbird NN2¬2N
18 isodd3 NOddN¬2N
19 3 17 18 sylanbrc NN2NOdd
20 1 19 sylbi N2NOdd