Metamath Proof Explorer


Theorem evenwodadd

Description: If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025)

Ref Expression
Hypotheses evenwodadd.1 φ i
evenwodadd.2 φ j
evenwodadd.3 φ ¬ 2 j
Assertion evenwodadd φ 2 i i + j

Proof

Step Hyp Ref Expression
1 evenwodadd.1 φ i
2 evenwodadd.2 φ j
3 evenwodadd.3 φ ¬ 2 j
4 2z 2
5 4 a1i φ 2
6 1 2 zaddcld φ i + j
7 dvdsmultr1 2 i i + j 2 i 2 i i + j
8 5 1 6 7 syl3anc φ 2 i 2 i i + j
9 4anpull2 i ¬ 2 i j ¬ 2 j i j ¬ 2 j ¬ 2 i
10 opoe i ¬ 2 i j ¬ 2 j 2 i + j
11 9 10 sylbir i j ¬ 2 j ¬ 2 i 2 i + j
12 11 ex i j ¬ 2 j ¬ 2 i 2 i + j
13 1 2 3 12 syl3anc φ ¬ 2 i 2 i + j
14 dvdsmultr2 2 i i + j 2 i + j 2 i i + j
15 5 1 6 14 syl3anc φ 2 i + j 2 i i + j
16 13 15 syld φ ¬ 2 i 2 i i + j
17 8 16 pm2.61d φ 2 i i + j