| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evenwodadd.1 |
|- ( ph -> i e. ZZ ) |
| 2 |
|
evenwodadd.2 |
|- ( ph -> j e. ZZ ) |
| 3 |
|
evenwodadd.3 |
|- ( ph -> -. 2 || j ) |
| 4 |
|
2z |
|- 2 e. ZZ |
| 5 |
4
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 6 |
1 2
|
zaddcld |
|- ( ph -> ( i + j ) e. ZZ ) |
| 7 |
|
dvdsmultr1 |
|- ( ( 2 e. ZZ /\ i e. ZZ /\ ( i + j ) e. ZZ ) -> ( 2 || i -> 2 || ( i x. ( i + j ) ) ) ) |
| 8 |
5 1 6 7
|
syl3anc |
|- ( ph -> ( 2 || i -> 2 || ( i x. ( i + j ) ) ) ) |
| 9 |
|
4anpull2 |
|- ( ( ( i e. ZZ /\ -. 2 || i ) /\ ( j e. ZZ /\ -. 2 || j ) ) <-> ( ( i e. ZZ /\ j e. ZZ /\ -. 2 || j ) /\ -. 2 || i ) ) |
| 10 |
|
opoe |
|- ( ( ( i e. ZZ /\ -. 2 || i ) /\ ( j e. ZZ /\ -. 2 || j ) ) -> 2 || ( i + j ) ) |
| 11 |
9 10
|
sylbir |
|- ( ( ( i e. ZZ /\ j e. ZZ /\ -. 2 || j ) /\ -. 2 || i ) -> 2 || ( i + j ) ) |
| 12 |
11
|
ex |
|- ( ( i e. ZZ /\ j e. ZZ /\ -. 2 || j ) -> ( -. 2 || i -> 2 || ( i + j ) ) ) |
| 13 |
1 2 3 12
|
syl3anc |
|- ( ph -> ( -. 2 || i -> 2 || ( i + j ) ) ) |
| 14 |
|
dvdsmultr2 |
|- ( ( 2 e. ZZ /\ i e. ZZ /\ ( i + j ) e. ZZ ) -> ( 2 || ( i + j ) -> 2 || ( i x. ( i + j ) ) ) ) |
| 15 |
5 1 6 14
|
syl3anc |
|- ( ph -> ( 2 || ( i + j ) -> 2 || ( i x. ( i + j ) ) ) ) |
| 16 |
13 15
|
syld |
|- ( ph -> ( -. 2 || i -> 2 || ( i x. ( i + j ) ) ) ) |
| 17 |
8 16
|
pm2.61d |
|- ( ph -> 2 || ( i x. ( i + j ) ) ) |