Metamath Proof Explorer


Theorem evenwodadd

Description: If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025)

Ref Expression
Hypotheses evenwodadd.1
|- ( ph -> i e. ZZ )
evenwodadd.2
|- ( ph -> j e. ZZ )
evenwodadd.3
|- ( ph -> -. 2 || j )
Assertion evenwodadd
|- ( ph -> 2 || ( i x. ( i + j ) ) )

Proof

Step Hyp Ref Expression
1 evenwodadd.1
 |-  ( ph -> i e. ZZ )
2 evenwodadd.2
 |-  ( ph -> j e. ZZ )
3 evenwodadd.3
 |-  ( ph -> -. 2 || j )
4 2z
 |-  2 e. ZZ
5 4 a1i
 |-  ( ph -> 2 e. ZZ )
6 1 2 zaddcld
 |-  ( ph -> ( i + j ) e. ZZ )
7 dvdsmultr1
 |-  ( ( 2 e. ZZ /\ i e. ZZ /\ ( i + j ) e. ZZ ) -> ( 2 || i -> 2 || ( i x. ( i + j ) ) ) )
8 5 1 6 7 syl3anc
 |-  ( ph -> ( 2 || i -> 2 || ( i x. ( i + j ) ) ) )
9 4anpull2
 |-  ( ( ( i e. ZZ /\ -. 2 || i ) /\ ( j e. ZZ /\ -. 2 || j ) ) <-> ( ( i e. ZZ /\ j e. ZZ /\ -. 2 || j ) /\ -. 2 || i ) )
10 opoe
 |-  ( ( ( i e. ZZ /\ -. 2 || i ) /\ ( j e. ZZ /\ -. 2 || j ) ) -> 2 || ( i + j ) )
11 9 10 sylbir
 |-  ( ( ( i e. ZZ /\ j e. ZZ /\ -. 2 || j ) /\ -. 2 || i ) -> 2 || ( i + j ) )
12 11 ex
 |-  ( ( i e. ZZ /\ j e. ZZ /\ -. 2 || j ) -> ( -. 2 || i -> 2 || ( i + j ) ) )
13 1 2 3 12 syl3anc
 |-  ( ph -> ( -. 2 || i -> 2 || ( i + j ) ) )
14 dvdsmultr2
 |-  ( ( 2 e. ZZ /\ i e. ZZ /\ ( i + j ) e. ZZ ) -> ( 2 || ( i + j ) -> 2 || ( i x. ( i + j ) ) ) )
15 5 1 6 14 syl3anc
 |-  ( ph -> ( 2 || ( i + j ) -> 2 || ( i x. ( i + j ) ) ) )
16 13 15 syld
 |-  ( ph -> ( -. 2 || i -> 2 || ( i x. ( i + j ) ) ) )
17 8 16 pm2.61d
 |-  ( ph -> 2 || ( i x. ( i + j ) ) )