| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evenwodadd.1 |
⊢ ( 𝜑 → 𝑖 ∈ ℤ ) |
| 2 |
|
evenwodadd.2 |
⊢ ( 𝜑 → 𝑗 ∈ ℤ ) |
| 3 |
|
evenwodadd.3 |
⊢ ( 𝜑 → ¬ 2 ∥ 𝑗 ) |
| 4 |
|
2z |
⊢ 2 ∈ ℤ |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 6 |
1 2
|
zaddcld |
⊢ ( 𝜑 → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
| 7 |
|
dvdsmultr1 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 2 ∥ 𝑖 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) ) |
| 8 |
5 1 6 7
|
syl3anc |
⊢ ( 𝜑 → ( 2 ∥ 𝑖 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) ) |
| 9 |
|
4anpull2 |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖 ) ∧ ( 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ) ↔ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ∧ ¬ 2 ∥ 𝑖 ) ) |
| 10 |
|
opoe |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖 ) ∧ ( 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ) → 2 ∥ ( 𝑖 + 𝑗 ) ) |
| 11 |
9 10
|
sylbir |
⊢ ( ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ∧ ¬ 2 ∥ 𝑖 ) → 2 ∥ ( 𝑖 + 𝑗 ) ) |
| 12 |
11
|
ex |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) → ( ¬ 2 ∥ 𝑖 → 2 ∥ ( 𝑖 + 𝑗 ) ) ) |
| 13 |
1 2 3 12
|
syl3anc |
⊢ ( 𝜑 → ( ¬ 2 ∥ 𝑖 → 2 ∥ ( 𝑖 + 𝑗 ) ) ) |
| 14 |
|
dvdsmultr2 |
⊢ ( ( 2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 2 ∥ ( 𝑖 + 𝑗 ) → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) ) |
| 15 |
5 1 6 14
|
syl3anc |
⊢ ( 𝜑 → ( 2 ∥ ( 𝑖 + 𝑗 ) → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) ) |
| 16 |
13 15
|
syld |
⊢ ( 𝜑 → ( ¬ 2 ∥ 𝑖 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) ) |
| 17 |
8 16
|
pm2.61d |
⊢ ( 𝜑 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) |