Metamath Proof Explorer


Theorem evenwodadd

Description: If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025)

Ref Expression
Hypotheses evenwodadd.1 ( 𝜑𝑖 ∈ ℤ )
evenwodadd.2 ( 𝜑𝑗 ∈ ℤ )
evenwodadd.3 ( 𝜑 → ¬ 2 ∥ 𝑗 )
Assertion evenwodadd ( 𝜑 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) )

Proof

Step Hyp Ref Expression
1 evenwodadd.1 ( 𝜑𝑖 ∈ ℤ )
2 evenwodadd.2 ( 𝜑𝑗 ∈ ℤ )
3 evenwodadd.3 ( 𝜑 → ¬ 2 ∥ 𝑗 )
4 2z 2 ∈ ℤ
5 4 a1i ( 𝜑 → 2 ∈ ℤ )
6 1 2 zaddcld ( 𝜑 → ( 𝑖 + 𝑗 ) ∈ ℤ )
7 dvdsmultr1 ( ( 2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 2 ∥ 𝑖 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) )
8 5 1 6 7 syl3anc ( 𝜑 → ( 2 ∥ 𝑖 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) )
9 4anpull2 ( ( ( 𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖 ) ∧ ( 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ) ↔ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ∧ ¬ 2 ∥ 𝑖 ) )
10 opoe ( ( ( 𝑖 ∈ ℤ ∧ ¬ 2 ∥ 𝑖 ) ∧ ( 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ) → 2 ∥ ( 𝑖 + 𝑗 ) )
11 9 10 sylbir ( ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) ∧ ¬ 2 ∥ 𝑖 ) → 2 ∥ ( 𝑖 + 𝑗 ) )
12 11 ex ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ ¬ 2 ∥ 𝑗 ) → ( ¬ 2 ∥ 𝑖 → 2 ∥ ( 𝑖 + 𝑗 ) ) )
13 1 2 3 12 syl3anc ( 𝜑 → ( ¬ 2 ∥ 𝑖 → 2 ∥ ( 𝑖 + 𝑗 ) ) )
14 dvdsmultr2 ( ( 2 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 2 ∥ ( 𝑖 + 𝑗 ) → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) )
15 5 1 6 14 syl3anc ( 𝜑 → ( 2 ∥ ( 𝑖 + 𝑗 ) → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) )
16 13 15 syld ( 𝜑 → ( ¬ 2 ∥ 𝑖 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) ) )
17 8 16 pm2.61d ( 𝜑 → 2 ∥ ( 𝑖 · ( 𝑖 + 𝑗 ) ) )