Metamath Proof Explorer


Theorem evlscaval

Description: Polynomial evaluation for scalars. See evlsscaval . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses evlscafv.1 Q = I eval R
evlscafv.2 W = I mPoly R
evlscafv.3 B = Base R
evlscafv.4 A = algSc W
evlscafv.5 φ I V
evlscafv.6 φ R CRing
evlscafv.7 φ X B
evlscafv.8 φ L : I B
Assertion evlscaval φ Q A X L = X

Proof

Step Hyp Ref Expression
1 evlscafv.1 Q = I eval R
2 evlscafv.2 W = I mPoly R
3 evlscafv.3 B = Base R
4 evlscafv.4 A = algSc W
5 evlscafv.5 φ I V
6 evlscafv.6 φ R CRing
7 evlscafv.7 φ X B
8 evlscafv.8 φ L : I B
9 1 2 3 4 5 6 7 evlsca φ Q A X = B I × X
10 9 fveq1d φ Q A X L = B I × X L
11 3 fvexi B V
12 11 a1i φ B V
13 12 5 8 elmapdd φ L B I
14 fvconst2g X B L B I B I × X L = X
15 7 13 14 syl2anc φ B I × X L = X
16 10 15 eqtrd φ Q A X L = X