Metamath Proof Explorer


Theorem evlvarval

Description: Polynomial evaluation builder for a variable. (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses evlvarval.1 Q = I eval S
evlvarval.2 P = I mPoly S
evlvarval.3 K = Base S
evlvarval.4 B = Base P
evlvarval.5 ˙ = P
evlvarval.6 · ˙ = S
evlvarval.7 φ I Z
evlvarval.8 φ S CRing
evlvarval.9 φ A K I
evlvarval.10 V = I mVar S
evlvarval.11 φ X I
Assertion evlvarval φ V X B Q V X A = A X

Proof

Step Hyp Ref Expression
1 evlvarval.1 Q = I eval S
2 evlvarval.2 P = I mPoly S
3 evlvarval.3 K = Base S
4 evlvarval.4 B = Base P
5 evlvarval.5 ˙ = P
6 evlvarval.6 · ˙ = S
7 evlvarval.7 φ I Z
8 evlvarval.8 φ S CRing
9 evlvarval.9 φ A K I
10 evlvarval.10 V = I mVar S
11 evlvarval.11 φ X I
12 8 crngringd φ S Ring
13 2 10 4 7 12 11 mvrcl φ V X B
14 fveq1 a = A a X = A X
15 1 10 3 7 8 11 evlvar φ Q V X = a K I a X
16 3 fvexi K V
17 16 a1i φ K V
18 7 17 9 elmaprd φ A : I K
19 18 11 ffvelcdmd φ A X K
20 14 15 9 19 fvmptd4 φ Q V X A = A X
21 13 20 jca φ V X B Q V X A = A X