Metamath Proof Explorer


Theorem evpmid

Description: The identity is an even permutation. (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypothesis evpmid.1 S=SymGrpD
Assertion evpmid DFinIDpmEvenD

Proof

Step Hyp Ref Expression
1 evpmid.1 S=SymGrpD
2 1 idresperm DFinIDBaseS
3 eqid pmSgnD=pmSgnD
4 3 psgnid DFinpmSgnDID=1
5 eqid BaseS=BaseS
6 1 5 3 psgnevpmb DFinIDpmEvenDIDBaseSpmSgnDID=1
7 2 4 6 mpbir2and DFinIDpmEvenD