Metamath Proof Explorer


Theorem ex-ceil

Description: Example for df-ceil . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-ceil 32=232=1

Proof

Step Hyp Ref Expression
1 ex-fl 32=132=2
2 3re 3
3 2 rehalfcli 32
4 3 renegcli 32
5 ceilval 3232=32
6 4 5 ax-mp 32=32
7 3 recni 32
8 7 negnegi 32=32
9 8 eqcomi 32=32
10 9 fveq2i 32=32
11 10 eqeq1i 32=132=1
12 11 biimpi 32=132=1
13 12 negeqd 32=132=1
14 6 13 eqtrid 32=132=1
15 ceilval 3232=32
16 3 15 ax-mp 32=32
17 negeq 32=232=-2
18 2cn 2
19 18 negnegi -2=2
20 17 19 eqtrdi 32=232=2
21 16 20 eqtrid 32=232=2
22 14 21 anim12ci 32=132=232=232=1
23 1 22 ax-mp 32=232=1