Metamath Proof Explorer


Theorem ex-hash

Description: Example for df-hash . (Contributed by AV, 4-Sep-2021)

Ref Expression
Assertion ex-hash 012=3

Proof

Step Hyp Ref Expression
1 df-tp 012=012
2 1 fveq2i 012=012
3 prfi 01Fin
4 snfi 2Fin
5 2ne0 20
6 1ne2 12
7 6 necomi 21
8 5 7 nelpri ¬201
9 disjsn 012=¬201
10 8 9 mpbir 012=
11 hashun 01Fin2Fin012=012=01+2
12 3 4 10 11 mp3an 012=01+2
13 2 12 eqtri 012=01+2
14 prhash2ex 01=2
15 2z 2
16 hashsng 22=1
17 15 16 ax-mp 2=1
18 14 17 oveq12i 01+2=2+1
19 2p1e3 2+1=3
20 18 19 eqtri 01+2=3
21 13 20 eqtri 012=3