Metamath Proof Explorer


Theorem expclzlem

Description: Lemma for expclz . (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expclzlem AA0NAN0

Proof

Step Hyp Ref Expression
1 eldifsn A0AA0
2 difss 0
3 eldifsn x0xx0
4 eldifsn y0yy0
5 mulcl xyxy
6 5 ad2ant2r xx0yy0xy
7 mulne0 xx0yy0xy0
8 eldifsn xy0xyxy0
9 6 7 8 sylanbrc xx0yy0xy0
10 3 4 9 syl2anb x0y0xy0
11 ax-1cn 1
12 ax-1ne0 10
13 eldifsn 10110
14 11 12 13 mpbir2an 10
15 reccl xx01x
16 recne0 xx01x0
17 15 16 jca xx01x1x0
18 eldifsn 1x01x1x0
19 17 3 18 3imtr4i x01x0
20 19 adantr x0x01x0
21 2 10 14 20 expcl2lem A0A0NAN0
22 21 3expia A0A0NAN0
23 1 22 sylanbr AA0A0NAN0
24 23 anabss3 AA0NAN0
25 24 3impia AA0NAN0