Description: Lemma for expclz . (Contributed by Mario Carneiro, 4-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | expclzlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn | |
|
2 | difss | |
|
3 | eldifsn | |
|
4 | eldifsn | |
|
5 | mulcl | |
|
6 | 5 | ad2ant2r | |
7 | mulne0 | |
|
8 | eldifsn | |
|
9 | 6 7 8 | sylanbrc | |
10 | 3 4 9 | syl2anb | |
11 | ax-1cn | |
|
12 | ax-1ne0 | |
|
13 | eldifsn | |
|
14 | 11 12 13 | mpbir2an | |
15 | reccl | |
|
16 | recne0 | |
|
17 | 15 16 | jca | |
18 | eldifsn | |
|
19 | 17 3 18 | 3imtr4i | |
20 | 19 | adantr | |
21 | 2 10 14 20 | expcl2lem | |
22 | 21 | 3expia | |
23 | 1 22 | sylanbr | |
24 | 23 | anabss3 | |
25 | 24 | 3impia | |