Metamath Proof Explorer


Theorem expdiv

Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expdiv ABB0N0ABN=ANBN

Proof

Step Hyp Ref Expression
1 divrec ABB0AB=A1B
2 1 3expb ABB0AB=A1B
3 2 3adant3 ABB0N0AB=A1B
4 3 oveq1d ABB0N0ABN=A1BN
5 reccl BB01B
6 mulexp A1BN0A1BN=AN1BN
7 5 6 syl3an2 ABB0N0A1BN=AN1BN
8 simp2l ABB0N0B
9 simp2r ABB0N0B0
10 nn0z N0N
11 10 3ad2ant3 ABB0N0N
12 exprec BB0N1BN=1BN
13 8 9 11 12 syl3anc ABB0N01BN=1BN
14 13 oveq2d ABB0N0AN1BN=AN1BN
15 expcl AN0AN
16 15 3adant2 ABB0N0AN
17 expcl BN0BN
18 17 adantlr BB0N0BN
19 18 3adant1 ABB0N0BN
20 expne0i BB0NBN0
21 8 9 11 20 syl3anc ABB0N0BN0
22 16 19 21 divrecd ABB0N0ANBN=AN1BN
23 14 22 eqtr4d ABB0N0AN1BN=ANBN
24 4 7 23 3eqtrd ABB0N0ABN=ANBN