Metamath Proof Explorer


Theorem expdiv

Description: Nonnegative integer exponentiation of a quotient. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expdiv A B B 0 N 0 A B N = A N B N

Proof

Step Hyp Ref Expression
1 divrec A B B 0 A B = A 1 B
2 1 3expb A B B 0 A B = A 1 B
3 2 3adant3 A B B 0 N 0 A B = A 1 B
4 3 oveq1d A B B 0 N 0 A B N = A 1 B N
5 reccl B B 0 1 B
6 mulexp A 1 B N 0 A 1 B N = A N 1 B N
7 5 6 syl3an2 A B B 0 N 0 A 1 B N = A N 1 B N
8 simp2l A B B 0 N 0 B
9 simp2r A B B 0 N 0 B 0
10 nn0z N 0 N
11 10 3ad2ant3 A B B 0 N 0 N
12 exprec B B 0 N 1 B N = 1 B N
13 8 9 11 12 syl3anc A B B 0 N 0 1 B N = 1 B N
14 13 oveq2d A B B 0 N 0 A N 1 B N = A N 1 B N
15 expcl A N 0 A N
16 15 3adant2 A B B 0 N 0 A N
17 expcl B N 0 B N
18 17 adantlr B B 0 N 0 B N
19 18 3adant1 A B B 0 N 0 B N
20 expne0i B B 0 N B N 0
21 8 9 11 20 syl3anc A B B 0 N 0 B N 0
22 16 19 21 divrecd A B B 0 N 0 A N B N = A N 1 B N
23 14 22 eqtr4d A B B 0 N 0 A N 1 B N = A N B N
24 4 7 23 3eqtrd A B B 0 N 0 A B N = A N B N