Metamath Proof Explorer


Theorem exprec

Description: Integer exponentiation of a reciprocal. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion exprec AA0N1AN=1AN

Proof

Step Hyp Ref Expression
1 expclz AA0NAN
2 reccl AA01A
3 2 3adant3 AA0N1A
4 recne0 AA01A0
5 4 3adant3 AA0N1A0
6 simp3 AA0NN
7 expclz 1A1A0N1AN
8 3 5 6 7 syl3anc AA0N1AN
9 expne0i AA0NAN0
10 simp1 AA0NA
11 simp2 AA0NA0
12 10 11 recidd AA0NA1A=1
13 12 oveq1d AA0NA1AN=1N
14 mulexpz AA01A1A0NA1AN=AN1AN
15 10 11 3 5 6 14 syl221anc AA0NA1AN=AN1AN
16 1exp N1N=1
17 6 16 syl AA0N1N=1
18 13 15 17 3eqtr3d AA0NAN1AN=1
19 1 8 9 18 mvllmuld AA0N1AN=1AN