Metamath Proof Explorer


Theorem extep

Description: Property of epsilon relation, see also extid , extssr and the comment of df-ssr . (Contributed by Peter Mazsa, 10-Jul-2019)

Ref Expression
Assertion extep AVBWAE-1=BE-1A=B

Proof

Step Hyp Ref Expression
1 eccnvep AVAE-1=A
2 eccnvep BWBE-1=B
3 1 2 eqeqan12d AVBWAE-1=BE-1A=B