Metamath Proof Explorer


Theorem f0bi

Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018)

Ref Expression
Assertion f0bi F:XF=

Proof

Step Hyp Ref Expression
1 ffn F:XFFn
2 fn0 FFnF=
3 1 2 sylib F:XF=
4 f0 :X
5 feq1 F=F:X:X
6 4 5 mpbiri F=F:X
7 3 6 impbii F:XF=