Metamath Proof Explorer


Theorem f1cnvcnv

Description: Two ways to express that a set A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of TakeutiZaring p. 24, who use the notation "Un_2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004)

Ref Expression
Assertion f1cnvcnv A-1-1:domA1-1VFunA-1FunA-1-1

Proof

Step Hyp Ref Expression
1 df-f1 A-1-1:domA1-1VA-1-1:domAVFunA-1-1-1
2 dffn2 A-1-1FndomAA-1-1:domAV
3 dmcnvcnv domA-1-1=domA
4 df-fn A-1-1FndomAFunA-1-1domA-1-1=domA
5 3 4 mpbiran2 A-1-1FndomAFunA-1-1
6 2 5 bitr3i A-1-1:domAVFunA-1-1
7 relcnv RelA-1
8 dfrel2 RelA-1A-1-1-1=A-1
9 7 8 mpbi A-1-1-1=A-1
10 9 funeqi FunA-1-1-1FunA-1
11 6 10 anbi12ci A-1-1:domAVFunA-1-1-1FunA-1FunA-1-1
12 1 11 bitri A-1-1:domA1-1VFunA-1FunA-1-1