Metamath Proof Explorer


Theorem f1coOLD

Description: Obsolete version of f1co as of 20-Sep-2024. (Contributed by NM, 28-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion f1coOLD F:B1-1CG:A1-1BFG:A1-1C

Proof

Step Hyp Ref Expression
1 df-f1 F:B1-1CF:BCFunF-1
2 df-f1 G:A1-1BG:ABFunG-1
3 fco F:BCG:ABFG:AC
4 funco FunG-1FunF-1FunG-1F-1
5 cnvco FG-1=G-1F-1
6 5 funeqi FunFG-1FunG-1F-1
7 4 6 sylibr FunG-1FunF-1FunFG-1
8 7 ancoms FunF-1FunG-1FunFG-1
9 3 8 anim12i F:BCG:ABFunF-1FunG-1FG:ACFunFG-1
10 9 an4s F:BCFunF-1G:ABFunG-1FG:ACFunFG-1
11 1 2 10 syl2anb F:B1-1CG:A1-1BFG:ACFunFG-1
12 df-f1 FG:A1-1CFG:ACFunFG-1
13 11 12 sylibr F:B1-1CG:A1-1BFG:A1-1C