Description: The codomain of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | f1dom3fv3dif.v | |
|
f1dom3fv3dif.n | |
||
f1dom3fv3dif.f | |
||
Assertion | f1dom3el3dif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dom3fv3dif.v | |
|
2 | f1dom3fv3dif.n | |
|
3 | f1dom3fv3dif.f | |
|
4 | f1f | |
|
5 | simpr | |
|
6 | eqidd | |
|
7 | 6 | 3mix1d | |
8 | 1 | simp1d | |
9 | eltpg | |
|
10 | 8 9 | syl | |
11 | 7 10 | mpbird | |
12 | 11 | adantr | |
13 | 5 12 | ffvelcdmd | |
14 | eqidd | |
|
15 | 14 | 3mix2d | |
16 | 1 | simp2d | |
17 | eltpg | |
|
18 | 16 17 | syl | |
19 | 15 18 | mpbird | |
20 | 19 | adantr | |
21 | 5 20 | ffvelcdmd | |
22 | 1 | simp3d | |
23 | tpid3g | |
|
24 | 22 23 | syl | |
25 | 24 | adantr | |
26 | 5 25 | ffvelcdmd | |
27 | 13 21 26 | 3jca | |
28 | 27 | expcom | |
29 | 4 28 | syl | |
30 | 3 29 | mpcom | |
31 | 1 2 3 | f1dom3fv3dif | |
32 | neeq1 | |
|
33 | neeq1 | |
|
34 | 32 33 | 3anbi12d | |
35 | neeq2 | |
|
36 | neeq1 | |
|
37 | 35 36 | 3anbi13d | |
38 | neeq2 | |
|
39 | neeq2 | |
|
40 | 38 39 | 3anbi23d | |
41 | 34 37 40 | rspc3ev | |
42 | 30 31 41 | syl2anc | |