Metamath Proof Explorer


Theorem f1dom3el3dif

Description: The codomain of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019)

Ref Expression
Hypotheses f1dom3fv3dif.v φAXBYCZ
f1dom3fv3dif.n φABACBC
f1dom3fv3dif.f φF:ABC1-1R
Assertion f1dom3el3dif φxRyRzRxyxzyz

Proof

Step Hyp Ref Expression
1 f1dom3fv3dif.v φAXBYCZ
2 f1dom3fv3dif.n φABACBC
3 f1dom3fv3dif.f φF:ABC1-1R
4 f1f F:ABC1-1RF:ABCR
5 simpr φF:ABCRF:ABCR
6 eqidd φA=A
7 6 3mix1d φA=AA=BA=C
8 1 simp1d φAX
9 eltpg AXAABCA=AA=BA=C
10 8 9 syl φAABCA=AA=BA=C
11 7 10 mpbird φAABC
12 11 adantr φF:ABCRAABC
13 5 12 ffvelcdmd φF:ABCRFAR
14 eqidd φB=B
15 14 3mix2d φB=AB=BB=C
16 1 simp2d φBY
17 eltpg BYBABCB=AB=BB=C
18 16 17 syl φBABCB=AB=BB=C
19 15 18 mpbird φBABC
20 19 adantr φF:ABCRBABC
21 5 20 ffvelcdmd φF:ABCRFBR
22 1 simp3d φCZ
23 tpid3g CZCABC
24 22 23 syl φCABC
25 24 adantr φF:ABCRCABC
26 5 25 ffvelcdmd φF:ABCRFCR
27 13 21 26 3jca φF:ABCRFARFBRFCR
28 27 expcom F:ABCRφFARFBRFCR
29 4 28 syl F:ABC1-1RφFARFBRFCR
30 3 29 mpcom φFARFBRFCR
31 1 2 3 f1dom3fv3dif φFAFBFAFCFBFC
32 neeq1 x=FAxyFAy
33 neeq1 x=FAxzFAz
34 32 33 3anbi12d x=FAxyxzyzFAyFAzyz
35 neeq2 y=FBFAyFAFB
36 neeq1 y=FByzFBz
37 35 36 3anbi13d y=FBFAyFAzyzFAFBFAzFBz
38 neeq2 z=FCFAzFAFC
39 neeq2 z=FCFBzFBFC
40 38 39 3anbi23d z=FCFAFBFAzFBzFAFBFAFCFBFC
41 34 37 40 rspc3ev FARFBRFCRFAFBFAFCFBFCxRyRzRxyxzyz
42 30 31 41 syl2anc φxRyRzRxyxzyz