Metamath Proof Explorer


Theorem f1ocnvd

Description: Describe an implicit one-to-one onto function. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses f1od.1 F=xAC
f1od.2 φxACW
f1od.3 φyBDX
f1od.4 φxAy=CyBx=D
Assertion f1ocnvd φF:A1-1 ontoBF-1=yBD

Proof

Step Hyp Ref Expression
1 f1od.1 F=xAC
2 f1od.2 φxACW
3 f1od.3 φyBDX
4 f1od.4 φxAy=CyBx=D
5 2 ralrimiva φxACW
6 1 fnmpt xACWFFnA
7 5 6 syl φFFnA
8 3 ralrimiva φyBDX
9 eqid yBD=yBD
10 9 fnmpt yBDXyBDFnB
11 8 10 syl φyBDFnB
12 4 opabbidv φyx|xAy=C=yx|yBx=D
13 df-mpt xAC=xy|xAy=C
14 1 13 eqtri F=xy|xAy=C
15 14 cnveqi F-1=xy|xAy=C-1
16 cnvopab xy|xAy=C-1=yx|xAy=C
17 15 16 eqtri F-1=yx|xAy=C
18 df-mpt yBD=yx|yBx=D
19 12 17 18 3eqtr4g φF-1=yBD
20 19 fneq1d φF-1FnByBDFnB
21 11 20 mpbird φF-1FnB
22 dff1o4 F:A1-1 ontoBFFnAF-1FnB
23 7 21 22 sylanbrc φF:A1-1 ontoB
24 23 19 jca φF:A1-1 ontoBF-1=yBD