Metamath Proof Explorer


Theorem f1rhm0to0OLD

Description: Obsolete version of f1ghm0to0 as of 13-May-2023. (Contributed by AV, 24-Oct-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses f1rhm0to0OLD.a A = Base R
f1rhm0to0OLD.b B = Base S
f1rhm0to0OLD.n N = 0 S
f1rhm0to0OLD.0 0 ˙ = 0 R
Assertion f1rhm0to0OLD F R RingHom S F : A 1-1 B X A F X = N X = 0 ˙

Proof

Step Hyp Ref Expression
1 f1rhm0to0OLD.a A = Base R
2 f1rhm0to0OLD.b B = Base S
3 f1rhm0to0OLD.n N = 0 S
4 f1rhm0to0OLD.0 0 ˙ = 0 R
5 rhmghm F R RingHom S F R GrpHom S
6 4 3 ghmid F R GrpHom S F 0 ˙ = N
7 5 6 syl F R RingHom S F 0 ˙ = N
8 7 3ad2ant1 F R RingHom S F : A 1-1 B X A F 0 ˙ = N
9 8 eqeq2d F R RingHom S F : A 1-1 B X A F X = F 0 ˙ F X = N
10 simp2 F R RingHom S F : A 1-1 B X A F : A 1-1 B
11 simp3 F R RingHom S F : A 1-1 B X A X A
12 rhmrcl1 F R RingHom S R Ring
13 1 4 ring0cl R Ring 0 ˙ A
14 12 13 syl F R RingHom S 0 ˙ A
15 14 3ad2ant1 F R RingHom S F : A 1-1 B X A 0 ˙ A
16 f1veqaeq F : A 1-1 B X A 0 ˙ A F X = F 0 ˙ X = 0 ˙
17 10 11 15 16 syl12anc F R RingHom S F : A 1-1 B X A F X = F 0 ˙ X = 0 ˙
18 9 17 sylbird F R RingHom S F : A 1-1 B X A F X = N X = 0 ˙
19 fveq2 X = 0 ˙ F X = F 0 ˙
20 19 8 sylan9eqr F R RingHom S F : A 1-1 B X A X = 0 ˙ F X = N
21 20 ex F R RingHom S F : A 1-1 B X A X = 0 ˙ F X = N
22 18 21 impbid F R RingHom S F : A 1-1 B X A F X = N X = 0 ˙