Metamath Proof Explorer


Theorem f2ndres

Description: Mapping of a restriction of the 2nd (second member of an ordered pair) function. (Contributed by NM, 7-Aug-2006) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion f2ndres 2ndA×B:A×BB

Proof

Step Hyp Ref Expression
1 vex yV
2 vex zV
3 1 2 op2nda ranyz=z
4 3 eleq1i ranyzBzB
5 4 biimpri zBranyzB
6 5 adantl yAzBranyzB
7 6 rgen2 yAzBranyzB
8 sneq x=yzx=yz
9 8 rneqd x=yzranx=ranyz
10 9 unieqd x=yzranx=ranyz
11 10 eleq1d x=yzranxBranyzB
12 11 ralxp xA×BranxByAzBranyzB
13 7 12 mpbir xA×BranxB
14 df-2nd 2nd=xVranx
15 14 reseq1i 2ndA×B=xVranxA×B
16 ssv A×BV
17 resmpt A×BVxVranxA×B=xA×Branx
18 16 17 ax-mp xVranxA×B=xA×Branx
19 15 18 eqtri 2ndA×B=xA×Branx
20 19 fmpt xA×BranxB2ndA×B:A×BB
21 13 20 mpbi 2ndA×B:A×BB