Metamath Proof Explorer


Theorem fabexg

Description: Existence of a set of functions. (Contributed by Paul Chapman, 25-Feb-2008)

Ref Expression
Hypothesis fabexg.1 F=x|x:ABφ
Assertion fabexg ACBDFV

Proof

Step Hyp Ref Expression
1 fabexg.1 F=x|x:ABφ
2 xpexg ACBDA×BV
3 pwexg A×BV𝒫A×BV
4 fssxp x:ABxA×B
5 velpw x𝒫A×BxA×B
6 4 5 sylibr x:ABx𝒫A×B
7 6 anim1i x:ABφx𝒫A×Bφ
8 7 ss2abi x|x:ABφx|x𝒫A×Bφ
9 1 8 eqsstri Fx|x𝒫A×Bφ
10 ssab2 x|x𝒫A×Bφ𝒫A×B
11 9 10 sstri F𝒫A×B
12 ssexg F𝒫A×B𝒫A×BVFV
13 11 12 mpan 𝒫A×BVFV
14 2 3 13 3syl ACBDFV