Metamath Proof Explorer


Theorem fallfac0

Description: The value of the falling factorial when N = 0 . (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion fallfac0 AA0_=1

Proof

Step Hyp Ref Expression
1 0nn0 00
2 fallrisefac A00A0_=10A0
3 1 2 mpan2 AA0_=10A0
4 neg1cn 1
5 exp0 110=1
6 4 5 mp1i A10=1
7 negcl AA
8 risefac0 AA0=1
9 7 8 syl AA0=1
10 6 9 oveq12d A10A0=11
11 1t1e1 11=1
12 10 11 eqtrdi A10A0=1
13 3 12 eqtrd AA0_=1