Metamath Proof Explorer


Theorem fcfelbas

Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfelbas JTopOnXLFilYF:YXAJfClusfLFAX

Proof

Step Hyp Ref Expression
1 fcfval JTopOnXLFilYF:YXJfClusfLF=JfClusXFilMapFL
2 1 eleq2d JTopOnXLFilYF:YXAJfClusfLFAJfClusXFilMapFL
3 eqid J=J
4 3 fclselbas AJfClusXFilMapFLAJ
5 2 4 syl6bi JTopOnXLFilYF:YXAJfClusfLFAJ
6 5 imp JTopOnXLFilYF:YXAJfClusfLFAJ
7 simpl1 JTopOnXLFilYF:YXAJfClusfLFJTopOnX
8 toponuni JTopOnXX=J
9 7 8 syl JTopOnXLFilYF:YXAJfClusfLFX=J
10 6 9 eleqtrrd JTopOnXLFilYF:YXAJfClusfLFAX