Metamath Proof Explorer


Theorem fclselbas

Description: A cluster point is in the base set. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypothesis fclselbas.1 X=J
Assertion fclselbas AJfClusFAX

Proof

Step Hyp Ref Expression
1 fclselbas.1 X=J
2 1 fclsfil AJfClusFFFilX
3 fclstopon AJfClusFJTopOnXFFilX
4 2 3 mpbird AJfClusFJTopOnX
5 fclsopn JTopOnXFFilXAJfClusFAXoJAosFos
6 4 2 5 syl2anc AJfClusFAJfClusFAXoJAosFos
7 6 ibi AJfClusFAXoJAosFos
8 7 simpld AJfClusFAX