Metamath Proof Explorer


Theorem fclsopn

Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion fclsopn JTopOnXFFilXAJfClusFAXoJAosFos

Proof

Step Hyp Ref Expression
1 isfcls2 JTopOnXFFilXAJfClusFsFAclsJs
2 filn0 FFilXF
3 2 adantl JTopOnXFFilXF
4 r19.2z FsFAclsJssFAclsJs
5 4 ex FsFAclsJssFAclsJs
6 3 5 syl JTopOnXFFilXsFAclsJssFAclsJs
7 topontop JTopOnXJTop
8 7 ad2antrr JTopOnXFFilXsFJTop
9 filelss FFilXsFsX
10 9 adantll JTopOnXFFilXsFsX
11 toponuni JTopOnXX=J
12 11 ad2antrr JTopOnXFFilXsFX=J
13 10 12 sseqtrd JTopOnXFFilXsFsJ
14 eqid J=J
15 14 clsss3 JTopsJclsJsJ
16 8 13 15 syl2anc JTopOnXFFilXsFclsJsJ
17 16 12 sseqtrrd JTopOnXFFilXsFclsJsX
18 17 sseld JTopOnXFFilXsFAclsJsAX
19 18 rexlimdva JTopOnXFFilXsFAclsJsAX
20 6 19 syld JTopOnXFFilXsFAclsJsAX
21 20 pm4.71rd JTopOnXFFilXsFAclsJsAXsFAclsJs
22 7 ad3antrrr JTopOnXFFilXAXsFJTop
23 13 adantlr JTopOnXFFilXAXsFsJ
24 simplr JTopOnXFFilXAXsFAX
25 11 ad3antrrr JTopOnXFFilXAXsFX=J
26 24 25 eleqtrd JTopOnXFFilXAXsFAJ
27 14 elcls JTopsJAJAclsJsoJAoos
28 22 23 26 27 syl3anc JTopOnXFFilXAXsFAclsJsoJAoos
29 28 ralbidva JTopOnXFFilXAXsFAclsJssFoJAoos
30 ralcom sFoJAoosoJsFAoos
31 r19.21v sFAoosAosFos
32 31 ralbii oJsFAoosoJAosFos
33 30 32 bitri sFoJAoosoJAosFos
34 29 33 bitrdi JTopOnXFFilXAXsFAclsJsoJAosFos
35 34 pm5.32da JTopOnXFFilXAXsFAclsJsAXoJAosFos
36 1 21 35 3bitrd JTopOnXFFilXAJfClusFAXoJAosFos