Metamath Proof Explorer


Theorem fcfneii

Description: A neighborhood of a cluster point of a function contains a function value from every tail. (Contributed by Jeff Hankins, 27-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfneii JTopOnXLFilYF:YXAJfClusfLFNneiJASLNFS

Proof

Step Hyp Ref Expression
1 fcfnei JTopOnXLFilYF:YXAJfClusfLFAXnneiJAsLnFs
2 ineq1 n=NnFs=NFs
3 2 neeq1d n=NnFsNFs
4 imaeq2 s=SFs=FS
5 4 ineq2d s=SNFs=NFS
6 5 neeq1d s=SNFsNFS
7 3 6 rspc2v NneiJASLnneiJAsLnFsNFS
8 7 ex NneiJASLnneiJAsLnFsNFS
9 8 com3r nneiJAsLnFsNneiJASLNFS
10 9 adantl AXnneiJAsLnFsNneiJASLNFS
11 1 10 syl6bi JTopOnXLFilYF:YXAJfClusfLFNneiJASLNFS
12 11 3imp2 JTopOnXLFilYF:YXAJfClusfLFNneiJASLNFS