Metamath Proof Explorer


Theorem flfssfcf

Description: A limit point of a function is a cluster point of the function. (Contributed by Jeff Hankins, 28-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion flfssfcf JTopOnXLFilYF:YXJfLimfLFJfClusfLF

Proof

Step Hyp Ref Expression
1 flimfcls JfLimXFilMapFLJfClusXFilMapFL
2 1 a1i JTopOnXLFilYF:YXJfLimXFilMapFLJfClusXFilMapFL
3 flfval JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL
4 fcfval JTopOnXLFilYF:YXJfClusfLF=JfClusXFilMapFL
5 2 3 4 3sstr4d JTopOnXLFilYF:YXJfLimfLFJfClusfLF