Metamath Proof Explorer


Theorem uffcfflf

Description: If the domain filter is an ultrafilter, the cluster points of the function are the limit points. (Contributed by Jeff Hankins, 12-Dec-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion uffcfflf JTopOnXLUFilYF:YXJfClusfLF=JfLimfLF

Proof

Step Hyp Ref Expression
1 toponmax JTopOnXXJ
2 fmufil XJLUFilYF:YXXFilMapFLUFilX
3 1 2 syl3an1 JTopOnXLUFilYF:YXXFilMapFLUFilX
4 uffclsflim XFilMapFLUFilXJfClusXFilMapFL=JfLimXFilMapFL
5 3 4 syl JTopOnXLUFilYF:YXJfClusXFilMapFL=JfLimXFilMapFL
6 ufilfil LUFilYLFilY
7 fcfval JTopOnXLFilYF:YXJfClusfLF=JfClusXFilMapFL
8 6 7 syl3an2 JTopOnXLUFilYF:YXJfClusfLF=JfClusXFilMapFL
9 flfval JTopOnXLFilYF:YXJfLimfLF=JfLimXFilMapFL
10 6 9 syl3an2 JTopOnXLUFilYF:YXJfLimfLF=JfLimXFilMapFL
11 5 8 10 3eqtr4d JTopOnXLUFilYF:YXJfClusfLF=JfLimfLF