Metamath Proof Explorer


Theorem flimfcls

Description: A limit point is a cluster point. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion flimfcls JfLimFJfClusF

Proof

Step Hyp Ref Expression
1 flimtop aJfLimFJTop
2 eqid J=J
3 2 flimfil aJfLimFFFilJ
4 flimclsi xFJfLimFclsJx
5 4 sseld xFaJfLimFaclsJx
6 5 com12 aJfLimFxFaclsJx
7 6 ralrimiv aJfLimFxFaclsJx
8 2 isfcls aJfClusFJTopFFilJxFaclsJx
9 1 3 7 8 syl3anbrc aJfLimFaJfClusF
10 9 ssriv JfLimFJfClusF