Metamath Proof Explorer


Theorem fcfnei

Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009) (Revised by Stefan O'Rear, 9-Aug-2015)

Ref Expression
Assertion fcfnei JTopOnXLFilYF:YXAJfClusfLFAXnneiJAsLnFs

Proof

Step Hyp Ref Expression
1 isfcf JTopOnXLFilYF:YXAJfClusfLFAXoJAosLoFs
2 simpll1 JTopOnXLFilYF:YXAXnneiJAJTopOnX
3 topontop JTopOnXJTop
4 2 3 syl JTopOnXLFilYF:YXAXnneiJAJTop
5 simpr JTopOnXLFilYF:YXAXnneiJAnneiJA
6 eqid J=J
7 6 neii1 JTopnneiJAnJ
8 4 5 7 syl2anc JTopOnXLFilYF:YXAXnneiJAnJ
9 6 ntrss2 JTopnJintJnn
10 4 8 9 syl2anc JTopOnXLFilYF:YXAXnneiJAintJnn
11 simplr JTopOnXLFilYF:YXAXnneiJAAX
12 toponuni JTopOnXX=J
13 2 12 syl JTopOnXLFilYF:YXAXnneiJAX=J
14 11 13 eleqtrd JTopOnXLFilYF:YXAXnneiJAAJ
15 14 snssd JTopOnXLFilYF:YXAXnneiJAAJ
16 6 neiint JTopAJnJnneiJAAintJn
17 4 15 8 16 syl3anc JTopOnXLFilYF:YXAXnneiJAnneiJAAintJn
18 5 17 mpbid JTopOnXLFilYF:YXAXnneiJAAintJn
19 snssg AXAintJnAintJn
20 11 19 syl JTopOnXLFilYF:YXAXnneiJAAintJnAintJn
21 18 20 mpbird JTopOnXLFilYF:YXAXnneiJAAintJn
22 6 ntropn JTopnJintJnJ
23 4 8 22 syl2anc JTopOnXLFilYF:YXAXnneiJAintJnJ
24 eleq2 o=intJnAoAintJn
25 ineq1 o=intJnoFs=intJnFs
26 25 neeq1d o=intJnoFsintJnFs
27 26 ralbidv o=intJnsLoFssLintJnFs
28 24 27 imbi12d o=intJnAosLoFsAintJnsLintJnFs
29 28 rspcv intJnJoJAosLoFsAintJnsLintJnFs
30 23 29 syl JTopOnXLFilYF:YXAXnneiJAoJAosLoFsAintJnsLintJnFs
31 21 30 mpid JTopOnXLFilYF:YXAXnneiJAoJAosLoFssLintJnFs
32 ssrin intJnnintJnFsnFs
33 ssn0 intJnFsnFsintJnFsnFs
34 33 ex intJnFsnFsintJnFsnFs
35 32 34 syl intJnnintJnFsnFs
36 35 ralimdv intJnnsLintJnFssLnFs
37 10 31 36 sylsyld JTopOnXLFilYF:YXAXnneiJAoJAosLoFssLnFs
38 37 ralrimdva JTopOnXLFilYF:YXAXoJAosLoFsnneiJAsLnFs
39 simpl1 JTopOnXLFilYF:YXAXJTopOnX
40 39 3 syl JTopOnXLFilYF:YXAXJTop
41 opnneip JTopoJAooneiJA
42 41 3expb JTopoJAooneiJA
43 40 42 sylan JTopOnXLFilYF:YXAXoJAooneiJA
44 ineq1 n=onFs=oFs
45 44 neeq1d n=onFsoFs
46 45 ralbidv n=osLnFssLoFs
47 46 rspcv oneiJAnneiJAsLnFssLoFs
48 43 47 syl JTopOnXLFilYF:YXAXoJAonneiJAsLnFssLoFs
49 48 expr JTopOnXLFilYF:YXAXoJAonneiJAsLnFssLoFs
50 49 com23 JTopOnXLFilYF:YXAXoJnneiJAsLnFsAosLoFs
51 50 ralrimdva JTopOnXLFilYF:YXAXnneiJAsLnFsoJAosLoFs
52 38 51 impbid JTopOnXLFilYF:YXAXoJAosLoFsnneiJAsLnFs
53 52 pm5.32da JTopOnXLFilYF:YXAXoJAosLoFsAXnneiJAsLnFs
54 1 53 bitrd JTopOnXLFilYF:YXAJfClusfLFAXnneiJAsLnFs