Metamath Proof Explorer


Theorem fclssscls

Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclssscls SFJfClusFclsJS

Proof

Step Hyp Ref Expression
1 eqid J=J
2 1 isfcls xJfClusFJTopFFilJsFxclsJs
3 2 simp3bi xJfClusFsFxclsJs
4 fveq2 s=SclsJs=clsJS
5 4 eleq2d s=SxclsJsxclsJS
6 5 rspcv SFsFxclsJsxclsJS
7 3 6 syl5 SFxJfClusFxclsJS
8 7 ssrdv SFJfClusFclsJS